Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Intell Neurosci ; 2022: 3687598, 2022.
Article in English | MEDLINE | ID: covidwho-1962471

ABSTRACT

A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.


Subject(s)
Divorce , Support Vector Machine , Developed Countries , Female , Humans , Linear Models , Neural Networks, Computer , United States
2.
Comput Biol Med ; 145: 105418, 2022 06.
Article in English | MEDLINE | ID: covidwho-1944669

ABSTRACT

The disease known as COVID-19 has turned into a pandemic and spread all over the world. The fourth industrial revolution known as Industry 4.0 includes digitization, the Internet of Things, and artificial intelligence. Industry 4.0 has the potential to fulfil customized requirements during the COVID-19 emergency crises. The development of a prediction framework can help health authorities to react appropriately and rapidly. Clinical imaging like X-rays and computed tomography (CT) can play a significant part in the early diagnosis of COVID-19 patients that will help with appropriate treatment. The X-ray images could help in developing an automated system for the rapid identification of COVID-19 patients. This study makes use of a deep convolutional neural network (CNN) to extract significant features and discriminate X-ray images of infected patients from non-infected ones. Multiple image processing techniques are used to extract a region of interest (ROI) from the entire X-ray image. The ImageDataGenerator class is used to overcome the small dataset size and generate ten thousand augmented images. The performance of the proposed approach has been compared with state-of-the-art VGG16, AlexNet, and InceptionV3 models. Results demonstrate that the proposed CNN model outperforms other baseline models with high accuracy values: 97.68% for two classes, 89.85% for three classes, and 84.76% for four classes. This system allows COVID-19 patients to be processed by an automated screening system with minimal human contact.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , Humans , Pandemics , SARS-CoV-2
3.
Vaccines (Basel) ; 10(5)2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1847415

ABSTRACT

COVID-19 is a widely spread disease, and in order to overcome its spread, vaccination is necessary. Different vaccines are available in the market and people have different sentiments about different vaccines. This study aims to identify variations and explore temporal trends in the sentiments of tweets related to different COVID-19 vaccines (Covaxin, Moderna, Pfizer, and Sinopharm). We used the Valence Aware Dictionary and Sentiment Reasoner (VADER) tool to analyze the public sentiments related to each vaccine separately and identify whether the sentiments are positive (compound ≥ 0.05), negative (compound ≤ -0.05), or neutral (-0.05 < compound < 0.05). Then, we analyzed tweets related to each vaccine further to find the time trends and geographical distribution of sentiments in different regions. According to our data, overall sentiments about each vaccine are neutral. Covaxin is associated with 28% positive sentiments and Moderna with 37% positive sentiments. In the temporal analysis, we found that tweets related to each vaccine increased in different time frames. Pfizer- and Sinopharm-related tweets increased in August 2021, whereas tweets related to Covaxin increased in July 2021. Geographically, the highest sentiment score (0.9682) is for Covaxin from India, while Moderna has the highest sentiment score (0.9638) from the USA. Overall, this study shows that public sentiments about COVID-19 vaccines have changed over time and geographically. The sentiment analysis can give insights into time trends that can help policymakers to develop their policies according to the requirements and enhance vaccination programs.

4.
Applied Sciences ; 11(18):8438, 2021.
Article in English | MDPI | ID: covidwho-1408390

ABSTRACT

Amid the worldwide COVID-19 pandemic lockdowns, the closure of educational institutes leads to an unprecedented rise in online learning. For limiting the impact of COVID-19 and obstructing its widespread, educational institutions closed their campuses immediately and academic activities are moved to e-learning platforms. The effectiveness of e-learning is a critical concern for both students and parents, specifically in terms of its suitability to students and teachers and its technical feasibility with respect to different social scenarios. Such concerns must be reviewed from several aspects before e-learning can be adopted at such a larger scale. This study endeavors to investigate the effectiveness of e-learning by analyzing the sentiments of people about e-learning. Due to the rise of social media as an important mode of communication recently, people’s views can be found on platforms such as Twitter, Instagram, Facebook, etc. This study uses a Twitter dataset containing 17,155 tweets about e-learning. Machine learning and deep learning approaches have shown their suitability, capability, and potential for image processing, object detection, and natural language processing tasks and text analysis is no exception. Machine learning approaches have been largely used both for annotation and text and sentiment analysis. Keeping in view the adequacy and efficacy of machine learning models, this study adopts TextBlob, VADER (Valence Aware Dictionary for Sentiment Reasoning), and SentiWordNet to analyze the polarity and subjectivity score of tweets’ text. Furthermore, bearing in mind the fact that machine learning models display high classification accuracy, various machine learning models have been used for sentiment classification. Two feature extraction techniques, TF-IDF (Term Frequency-Inverse Document Frequency) and BoW (Bag of Words) have been used to effectively build and evaluate the models. All the models have been evaluated in terms of various important performance metrics such as accuracy, precision, recall, and F1 score. The results reveal that the random forest and support vector machine classifier achieve the highest accuracy of 0.95 when used with Bow features. Performance comparison is carried out for results of TextBlob, VADER, and SentiWordNet, as well as classification results of machine learning models and deep learning models such as CNN (Convolutional Neural Network), LSTM (Long Short Term Memory), CNN-LSTM, and Bi-LSTM (Bidirectional-LSTM). Additionally, topic modeling is performed to find the problems associated with e-learning which indicates that uncertainty of campus opening date, children’s disabilities to grasp online education, and lagging efficient networks for online education are the top three problems.

5.
J Ambient Intell Humaniz Comput ; 13(1): 535-547, 2022.
Article in English | MEDLINE | ID: covidwho-1059815

ABSTRACT

COVID-19 pandemic is widely spreading over the entire world and has established significant community spread. Fostering a prediction system can help prepare the officials to respond properly and quickly. Medical imaging like X-ray and computed tomography (CT) can play an important role in the early prediction of COVID-19 patients that will help the timely treatment of the patients. The x-ray images from COVID-19 patients reveal the pneumonia infections that can be used to identify the patients of COVID-19. This study presents the use of Convolutional Neural Network (CNN) that extracts the features from chest x-ray images for the prediction. Three filters are applied to get the edges from the images that help to get the desired segmented target with the infected area of the x-ray. To cope with the smaller size of the training dataset, Keras' ImageDataGenerator class is used to generate ten thousand augmented images. Classification is performed with two, three, and four classes where the four-class problem has X-ray images from COVID-19, normal people, virus pneumonia, and bacterial pneumonia. Results demonstrate that the proposed CNN model can predict COVID-19 patients with high accuracy. It can help automate screening of the patients for COVID-19 with minimal contact, especially areas where the influx of patients can not be treated by the available medical staff. The performance comparison of the proposed approach with VGG16 and AlexNet shows that classification results for two and four classes are competitive and identical for three-class classification.

6.
Non-conventional in 0 | WHO COVID | ID: covidwho-680090

ABSTRACT

Machine learning (ML) based forecasting mechanisms have proved their significance to anticipate in perioperative outcomes to improve the decision making on the future course of actions. The ML models have long been used in many application domains which needed the identification and prioritization of adverse factors for a threat. Several prediction methods are being popularly used to handle forecasting problems. This study demonstrates the capability of ML models to forecast the number of upcoming patients affected by COVID-19 which is presently considered as a potential threat to mankind. In particular, four standard forecasting models, such as linear regression (LR), least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and exponential smoothing (ES) have been used in this study to forecast the threatening factors of COVID-19. Three types of predictions are made by each of the models, such as the number of newly infected cases, the number of deaths, and the number of recoveries in the next 10 days. The results produced by the study proves it a promising mechanism to use these methods for the current scenario of the COVID-19 pandemic. The results prove that the ES performs best among all the used models followed by LR and LASSO which performs well in forecasting the new confirmed cases, death rate as well as recovery rate, while SVM performs poorly in all the prediction scenarios given the available dataset.

SELECTION OF CITATIONS
SEARCH DETAIL